Published in

American Chemical Society, Biomacromolecules, 1(16), p. 257-265, 2014

DOI: 10.1021/bm5014525

Links

Tools

Export citation

Search in Google Scholar

Molecular Adhesion at Clay Nanocomposite Interfaces Depends on Counterion Hydration–Molecular Dynamics Simulation of Montmorillonite/Xyloglucan

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nacre-mimetic clay/polymer nanocomposites with clay platelet orientation parallel to the film surface show interesting gas barrier and mechanical properties. In moist conditions, interfacial adhesion is lowered and mechanical properties are reduced. Molecular dynamic simulations (MD) have been performed to investigate the effects of counter ions on molecular adhesion at montmorillonite clay (Mnt)-xyloglucan (XG) interfaces. We focus on the role of both monovalent cations K+, Na+, Li+ and the divalent cation Ca2+ for the mediating and stabilizing the Mnt/XG complex formation. The conformation of adsorbed XG is strongly influenced by the choice of counterion, and so is the simulated work of adhesion. Free energy profiles that are used to estimate molecular adhesion show stronger interaction between XG and clay in the monovalent cation system than in divalent cation system, following a decreasing order of K-Mnt, Na-Mnt, Li-Mnt and Ca-Mnt. The Mnt clay hydrates differently in the presence of different counter ions, leading to a chemical potential of water that is highest in the case of K-Mnt, followed by Na-Mnt and Li-Mnt, and lowest in the case of Ca-Mnt. This means that water is most easily displaced from the interface in the case of K-Mnt, which contributes to the relatively high work of adhesion. In all systems, the penalty of replacing polymer with water at the interface gives a positive contribution to the work of adhesion of between 19% and 35%. Our work confirms the important role of counter ions in mediating the adsorption of biopolymer XG to Mnt clays and predicts potassium or sodium as the best choice of counter ions for a Mnt-based bio-composite design.