Published in

BioMed Central, BMC Research Notes, 1(7), 2014

DOI: 10.1186/1756-0500-7-613

Links

Tools

Export citation

Search in Google Scholar

Bone marrow-derived progenitor cells attenuate inflammation in lipopolysaccharide-induced acute respiratory distress syndrome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Acute respiratory distress syndrome (ARDS) is the most common cause of respiratory failure among critically ill patients. Novel treatment strategies are required to address this common clinical problem. The application of exogenous adult stem cells was associated with a beneficial outcome in various pre-clinical models of ARDS. In the present study we evaluated the functional capacity and homing ability of bone marrow-derived progenitor cells (BMDPC) in vitro and investigated their potential as a treatment strategy in lipopolysaccharide (LPS)-induced ARDS. Results Evaluation of the BMDPC showed functional capacity to form endothelial outgrowth cell colonies, which stained positive for CD133 and CD31. Furthermore, DiI-stained BMDPC were demonstrated to home to injured lung tissue. Rats treated with BMDPC showed significantly reduced histopathological changes, a reduced expression of ICAM-1 and VCAM-1 by the lung tissue, an inhibition of proinflammatory cytokine synthesis, a reduced weight loss and a reduced mortality (p