Published in

Elsevier, Nutrition Research, 9(32), p. 684-693, 2012

DOI: 10.1016/j.nutres.2012.08.003

Links

Tools

Export citation

Search in Google Scholar

Green tea extract reverses endothelial dysfunction and reduces atherosclerosis progression in homozygous knockout low-density lipoprotein receptor mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aim of this study was to evaluate the effects of green tea extract (GTE) administration on vascular reactivity and atherosclerosis progression in low-density lipoprotein receptor knockout mice. We hypothesized that GTE intake may ameliorate atherosclerosis by improving endothelial dysfunction. Animals (n = 12 per group) were fed a hypercholesterolemic diet and received either water or GTE at a dose of 50, 100, or 300 mg/kg once a day by gavage (100 μL/10 g weight). After 4 weeks, atherosclerosis extension and vascular reactivity were evaluated in the aorta, and the levels of lipids, monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor α were measured in the plasma. Administration of GTE at a dose of 50 mg/kg significantly decreased the area of atherosclerotic lesions by 35%, improved the vascular reactivity in the isolated thoracic aorta, and lowered the plasma levels of both MCP-1 and triglycerides. Delivery of 100 mg/kg of GTE only promoted vasocontraction and vasorelaxation (P < .05), whereas a dose of 300 mg/kg was ineffective. Maximum contraction and relaxation negatively correlated with the lesion area (r = -0.755 and -0.767, respectively), whereas the plasma levels of MCP-1 and triglycerides positively correlated with plaque size (r = 0.549 and 0.421, respectively). In summary, our results supported the hypothesis that administration of GTE at low doses may contribute to a decrease in atherosclerosis progression by reversing endothelial dysfunction.