Published in

American Chemical Society, ACS Applied Materials and Interfaces, 21(6), p. 18475-18479, 2014

DOI: 10.1021/am506435u

Links

Tools

Export citation

Search in Google Scholar

Graphene-Immobilized Monomeric Bipyridine-Mx+(Mx+= Fe3+, Co2+, Ni2+, or Cu2+) Complexes for Electrocatalytic Water Oxidation

Journal article published in 2014 by Xin Zhou, Teng Zhang, Carter W. Abney ORCID, Zhong Li, Wenbin Lin
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Covalent anchoring of 2,2'-bipyridine (L) to a graphene (Gr) modified electrode followed by treatment with an M(x+)(NO3)x solution (M = Fe(3+), Co(2+), Ni(2+), or Cu(2+)) results in surface-bound catalysts with high redox activity in neutral water at ambient temperature. Raman and IR spectroscopies indicate the successful L grafting and Gr deposition onto the electrodes, whereas metal concentration was determined by inductively coupled plasma mass spectrometry (ICP-MS). Cyclic voltammetry measurements were used to investigate catalytic performances, whereas a rotating ring-disk electrode was used to measure the faraday efficiencies of oxygen evolution reaction and determine experimental turnover frequencies (TOFs). Of the four metal-L complexes investigated, Co-L on a Gr-modified indium tin oxide (ITO) electrode exhibits the best catalytic activity. Washing with a solution containing catalytically inert Zn(2+) removes Co weakly bound by surface carboxylate functionalities, and ensures the presence of only covalently attached active catalytic species. This process results in an experimental TOF of 14 s(-1) at an overpotential of 834 mV. Functionalization of Gr-modified electrodes with appropriate metal-binding moieties thus provides a feasible strategy for loading first row transition metals onto conductive surfaces for the generation of highly active water oxidation catalysts.