Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, OncoImmunology, 6(4), p. e1008850, 2015

DOI: 10.1080/2162402x.2015.1008850

Links

Tools

Export citation

Search in Google Scholar

Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

While multiple myeloma (MM) is almost invariably preceded by asymptomatic monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering MM (SMM), the alterations of the bone marrow (BM) microenvironment that establish progression to symptomatic disease are circumstantial. Here we show that in Vk*MYC mice harboring oncogene-driven plasma cell proliferative disorder, disease appearance associated with substantial modifications of the BM microenvironment, including a progressive accumulation of both CD8+ and CD4+ T cells with a dominant T helper type 1 (Th1) response. Progression from asymptomatic to symptomatic MM was characterized by further BM accrual of T cells with reduced Th1 and persistently increased Th2 cytokine production, which associated with accumulation of CD206+Tie2+ macrophages, and increased pro-angiogenic cytokines and microvessel density (MVD). Notably, MVD was also increased at diagnosis in the BM of MGUS and SMM patients that subsequently progressed to MM when compared with MGUS and SMM that remained quiescent. These findings suggest a multistep pathogenic process in MM, in which the immune system may contribute to angiogenesis and disease progression. They also suggest initiating a large multicenter study to investigate MVD in asymptomatic patients as prognostic factor for the progression and outcome of this disease.