Published in

Springer, Journal of Membrane Biology, 3(248), p. 431-442, 2015

DOI: 10.1007/s00232-015-9801-1

Links

Tools

Export citation

Search in Google Scholar

A Commensal Strain of Staphylococcus epidermidis Overexpresses Membrane Proteins Associated with Pathogenesis When Grown in Biofilms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Staphylococcus epidermidis has emerged as one of the major nosocomial pathogens associated with infections of implanted medical devices. The most important factor in the pathogenesis of these infections is the formation of bacterial biofilms. Bacteria grown in biofilms are more resistant to antibiotics and to the immune defence system than planktonic bacteria. In these infections, the antimicrobial therapy usually fails and the removal of the biofilm-coated implanted device is the only effective solution. In this study, three proteomic approaches were performed to investigate membrane proteins associated to biofilm formation: (i) sample fractionation by gel electrophoresis, followed by isotopic labelling and LC-MS/MS analysis, (ii) in-solution sample preparation, followed by isotopic labelling and LC-MS/MS analysis and (iii) in-solution sample preparation and label-free LC-MS/MS analysis. We found that the commensal strain S. epidermidis CECT 231 grown in biofilms expressed higher levels of five membrane and membrane-associated proteins involved in pathogenesis: accumulation-associated protein, staphylococcal secretory antigen, signal transduction protein TRAP, ribonuclease Y and phenol soluble modulin beta 1 when compared with bacteria grown under planktonic conditions. These results indicate that a commensal strain can acquire a pathogenic phenotype depending on the mode of growth.