Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Oncogene, 32(32), p. 3744-3753, 2012

DOI: 10.1038/onc.2012.387

Links

Tools

Export citation

Search in Google Scholar

Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It has become increasingly clear that oncogenes not only provide aberrant growth signals to cells but also cause DNA damage at replication forks (replication stress), which activate the ataxia telangiectasia mutated (ATM)/p53-dependent tumor barrier. Here we studied underlying mechanisms of oncogene-induced replication stress in cells overexpressing the oncogene Cyclin E. Cyclin E overexpression is associated with increased firing of replication origins, impaired replication fork progression and DNA damage that activates RAD51-mediated recombination. By inhibiting replication initiation factors, we show that Cyclin E-induced replication slowing and DNA damage is a consequence of excessive origin firing. A significant amount of Cyclin E-induced replication slowing is due to interference between replication and transcription, which also underlies the activation of homologous recombination. Our data suggest that Cyclin E-induced replication stress is caused by deregulation of replication initiation and increased interference between replication and transcription, which results in impaired replication fork progression and DNA damage triggering the tumor barrier or cancer-promoting mutations.Oncogene advance online publication, 3 September 2012; doi:10.1038/onc.2012.387.