Published in

Elsevier, Molecular and Cellular Endocrinology, 1-2(377), p. 65-74

DOI: 10.1016/j.mce.2013.06.035

Links

Tools

Export citation

Search in Google Scholar

Glucose responsiveness in a novel adult-derived GnRH cell line, mHypoA-GnRH/GFP: Involvement of AMP-activated protein kinase

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Glucose regulates energy homeostasis and reproductive function within the hypothalamus. The underlying mechanisms responsible for glucose regulation of GnRH gene transcription were investigated using a novel murine immortalized, adult-derived hypothalamic cell line, mHypoA-GnRH/GFP. Analysis of GnRH mRNA synthesis and secretion following agonist treatment demonstrated that the mHypoA-GnRH/GFP cell line is a representative model of in vivo GnRH neurons. c-fos mRNA levels, following glucose exposure, indicated that these neurons were responsive to low (0.5 mM) and high (5 mM) glucose, and high glucose stimulated GnRH mRNA transcription in a metabolism-dependent manner. Glucose inhibited AMPK activity, and was linked to the downstream stimulation of GnRH mRNA levels. The effect was confirmed with an AMPK antagonist, Compound C. Collectively, these findings demonstrate that glucose can directly regulate GnRH transcription, while implicating the AMPK pathway as an essential mediator of nutritional signaling in a novel GnRH neuronal cell model.