Published in

Elsevier, Biochemical and Biophysical Research Communications, 2(263), p. 570-574, 1999

DOI: 10.1006/bbrc.1999.1413

Links

Tools

Export citation

Search in Google Scholar

Bacterial Lipopolysaccharide Increases Prostaglandin Production by Rat Astrocytes via Inducible Cyclo-oxygenase: Evidence for the Involvement of Nuclear Factor κB

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study was set to investigate the mechanisms through which bacterial lipopolysaccharide (LPS) stimulates prostaglandin (PG) production in rat astrocytes. Primary cultures of rat hypothalamic astrocytes were established. Cells were treated with LPS alone or LPS plus antagonists of various pathways, and the subsequent changes in cyclo-oxygenase (COX) activity were monitored by measuring a COX end product, PGE2, released into the incubation medium. It was found that (i) LPS produced a concentration-dependent increase in PGE2 release from astrocytes. The potency of LPS was significantly increased by the addition of serum into the incubation medium; (ii) after 24 h of incubation, inducible COX (COX-2) accounts for most of the LPS-stimulated PG production, as the latter was markedly reduced by dexamethasone and the specific COX-2 inhibitor NS 398; and (iii) nuclear factor kappaB appears to play a role in the activation of COX-2 induced by LPS, since certain inhibitors of this transcription factor were able to antagonize, at least in part, the effects of LPS on PGE2 release.