Published in

Elsevier, Molecular and Cellular Proteomics, 8(13), p. 2147-2167, 2014

DOI: 10.1074/mcp.m114.040923

Links

Tools

Export citation

Search in Google Scholar

Deciphering Thylakoid Sub-compartments using a Mass Spectrometry-based Approach

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Photosynthesis has shaped atmospheric and ocean chemistries and probably changed the climate as well, as oxygen is released from water as part of the photosynthetic process. In photosynthetic eukaryotes, this process occurs in the chloroplast, an organelle containing the most abundant biological membrane, the thylakoids. The thylakoids of plants and some green algae are structurally inhomogeneous, consisting of two main domains: the grana, which are piles of membranes gathered by stacking forces, and the stroma-lamellae, which are unstacked thylakoids connecting the grana. The major photosynthetic complexes are unevenly distributed, within these compartments, due to steric and electrostatic constraints. Although proteomic analysis of thylakoids has been instrumental to define its protein components, no extensive proteomic study of sub-thylakoid localization of proteins in the BBY (grana) and the stroma-lamellae fractions has been achieved so far. To fill this gap, we performed a complete survey of the protein composition of these thylakoid sub-compartments using thylakoid membrane fractionations. We employed semi-quantitative proteomics coupled with a data analysis pipeline and manual annotation to differentiate genuine BBY and stroma-lamellae proteins from possible contaminants. About 300 thylakoid (or potentially thylakoid) proteins were shown to be enriched in either the BBY or the stroma-lamellae fractions. Overall present findings corroborate previous observations obtained for photosynthetic proteins that used non-proteomic approaches. The originality of the present proteomic relies in the identification of photosynthetic proteins whose differential distribution in the thylakoid sub-compartments might explain already observed phenomenon such as LHCII docking. Besides, from the present localization results we can suggest new molecular actors for photosynthesis-linked activities. For instance, most PsbP-like subunits being differently localized in stroma-lamellae, these proteins could be linked to the PSI-NDH complex in the context of cyclic electron flow around PSI. In addition we could identify about a hundred new likely minor thylakoid (or chloroplast) proteins, some of them being potential regulators of the chloroplast physiology.