Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 4(180), p. 2419-2428, 2008

DOI: 10.4049/jimmunol.180.4.2419

Links

Tools

Export citation

Search in Google Scholar

Integrin β1 regulates phagosome maturation in macrophages through Rac expression

Journal article published in 2008 by Qing Wang, Hong Li, Tim Oliver, Michael Glogauer ORCID, Jian Guo, You-Wen He
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phagocytosis and subsequent phagosome maturation by professional phagocytes are essential in the clearance of infectious microbial pathogens. The molecular regulation of phagosome maturation is largely unknown. We show that integrin beta(1) plays critical roles in the phagocytosis of microbial pathogens and phagosome maturation. Macrophages lacking integrin beta(1) expression exhibit reduced phagocytosis of bacteria, including group B streptococcus and Staphylococcus aureus. Furthermore, phagosomes from macrophages lacking integrin beta(1) show lowered maturation rate, defective acquisition of lysosome membrane markers, and reduced F-actin accumulation in the periphagosomal region. Integrin beta(1)-deficient macrophages exhibit impaired bactericidal activity. We found that the expression of the Rho family GTPases Rac1, Rac2, and Cdc42 was reduced in integrin beta(1)-deficient macrophages. Ectopic expression of Rac1, but not Cdc42, in integrin beta(1)-deficient macrophages restored defective phagosome maturation and F-actin accumulation in the periphagosomal region. Importantly, macrophages lacking Rac1/2 also exhibit defective maturation of phagosomes derived from opsonized Escherichia coli or IgG beads. Taken together, these results suggest that integrin beta(1) regulates phagosome maturation in macrophages through Rac expression.