Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Evolutionary Computation, 3(14), p. 329-355, 2010

DOI: 10.1109/tevc.2009.2027359

Links

Tools

Export citation

Search in Google Scholar

Generalizing Surrogate-Assisted Evolutionary Computation

Journal article published in 2010 by Dudy Lim, Yaochu Jin ORCID, Yew-Soon Ong, Bernhard Sendhoff
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using surrogate models in evolutionary search provides an efficient means of handling today's complex applications plagued with increasing high-computational needs. Recent surrogate-assisted evolutionary frameworks have relied on the use of a variety of different modeling approaches to approximate the complex problem landscape. From these recent studies, one main research issue is with the choice of modeling scheme used, which has been found to affect the performance of evolutionary search significantly. Given that theoretical knowledge available for making a decision on an approximation model a priori is very much limited, this paper describes a generalization of surrogate-assisted evolutionary frameworks for optimization of problems with objectives and constraints that are computationally expensive to evaluate. The generalized evolutionary framework unifies diverse surrogate models synergistically in the evolutionary search. In particular, it focuses on attaining reliable search performance in the surrogate-assisted evolutionary framework by working on two major issues: 1) to mitigate the 'curse of uncertainty' robustly, and 2) to benefit from the 'bless of uncertainty.' The backbone of the generalized framework is a surrogate-assisted memetic algorithm that conducts simultaneous local searches using ensemble and smoothing surrogate models, with the aims of generating reliable fitness prediction and search improvements simultaneously. Empirical study on commonly used optimization benchmark problems indicates that the generalized framework is capable of attaining reliable, high quality, and efficient performance under a limited computational budget.