Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Nano Letters, 5(15), p. 3571-3577, 2015

DOI: 10.1021/acs.nanolett.5b01058

Links

Tools

Export citation

Search in Google Scholar

Arrayed van der waals vertical heterostructures based on 2d gase grown by molecular beam epitaxy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Vertically stacking two-dimensional (2D) materials can enable the design of novel electronic and optoelectronic devices and realize complex functionality. However, the fabrication of such artificial heterostructures on a wafer scale with an atomically sharp interface poses an unprecedented challenge. Here, we demonstrate a convenient and controllable approach for the production of wafer-scale 2D GaSe thin films by molecular beam epitaxy. In situ reflection high-energy electron diffraction oscillations and Raman spectroscopy reveal a layer-by-layer van der Waals epitaxial growth mode. Highly efficient photodetector arrays were fabricated, based on few-layer GaSe on Si. These photodiodes show steady rectifying characteristics and a high external quantum efficiency of 23.6%. The resultant photoresponse is super-fast and robust, with a response time of 60 μs. Importantly, the device shows no sign of degradation after 1 million cycles of operation. We also carried out numerical simulations to understand the underlying device working principles. Our study establishes a new approach to produce controllable, robust, and large-area 2D heterostructures and presents a crucial step for further practical applications.