Published in

American Geophysical Union, Journal of Geophysical Research. Solid Earth, 9(119), p. 6841-6854, 2014

DOI: 10.1002/2014jb011086

Links

Tools

Export citation

Search in Google Scholar

Quantitative estimate of heat flow from a mid-ocean ridge axial valley, Raven field, Juan de Fuca Ridge: Observations and inferences: HEATFLOW WITHIN RAVEN HYDROTHERMAL FIELD

Journal article published in 2014 by Marie S. Salmi, H. Paul Johnson, Maurice A. Tivey ORCID, Michael Hutnak
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 6841–6854, doi:10.1002/2014JB011086. ; A systematic heat flow survey using thermal blankets within the Endeavour segment of the Juan de Fuca Ridge axial valley provides quantitative estimates of the magnitude and distribution of conductive heat flow at a mid-ocean ridge, with the goal of testing current models of hydrothermal circulation present within newly formed oceanic crust. Thermal blankets were deployed covering an area of 700 by 450 m in the Raven Hydrothermal vent field area located 400 m north of the Main Endeavour hydrothermal field. A total of 176 successful blanket deployment sites measured heat flow values that ranged from 0 to 31 W m−2. Approximately 53% of the sites recorded values lower than 100 mW m−2, suggesting large areas of seawater recharge and advective extraction of lithospheric heat. High heat flow values were concentrated around relatively small “hot spots.” Integration of heat flow values over the Raven survey area gives an estimate of conductive heat output of 0.3 MW, an average of 0.95 W m−2, over the survey area. Fluid circulation cell dimensions and scaling equations allow calculation of a Rayleigh number of approximately 700 in Layer 2A. The close proximity of high and low heat flow areas, coupled with previous estimates of surficial seafloor permeability, argues for the presence of small-scale hydrothermal fluid circulation cells within the high-porosity uppermost crustal layer of the axial seafloor. ; This work has been funded by the National Science Foundation under grant OCE-1037870 and was supported under a National Science Foundation Graduate Research Fellowship to MSS ; 2015-03-15