Published in

Elsevier, Journal of Magnetic Resonance, (241), p. 103-114

DOI: 10.1016/j.jmr.2013.10.021



Export citation

Search in Google Scholar

Information-driven modeling of large macromolecular assemblies using NMR data

Journal article published in 2014 by Hugo van Ingen, Alexandre M. J. J. Bonvin ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Availability of high-resolution atomic structures is one of the prerequisites for a mechanistic understanding of biomolecular function. This atomic information can, however, be difficult to acquire for interesting systems such as high molecular weight and multi-subunit complexes. For these, low-resolution and/or sparse data from a variety of sources including NMR are often available to define the interaction between the subunits. To make best use of all the available information and shed light on these challenging systems, integrative computational tools are required that can judiciously combine and accurately translate the sparse experimental data into structural information. In this Perspective we discuss NMR techniques and data sources available for the modeling of large and multi-subunit complexes. Recent developments are illustrated by particularly challenging application examples taken from the literature. Within this context, we also position our data-driven docking approach, HADDOCK, which can integrate a variety of information sources to drive the modeling of biomolecular complexes. It is the synergy between experimentation and computational modeling that will provides us with detailed views on the machinery of life and lead to a mechanistic understanding of biomolecular function.