Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review Letters, 6(96)

DOI: 10.1103/physrevlett.96.066101

Links

Tools

Export citation

Search in Google Scholar

Less strain energy despite fewer misfit dislocations: the impact of ordering.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The average strain state of Ge films grown on Si(111) by surfactant mediated epitaxy has been compared to the ordering of the interfacial misfit dislocation network. Surprisingly, a smaller degree of average lattice relaxation was found in films grown at higher temperature. On the other hand, these films exhibit a better ordered dislocation network. This effect energetically compensates the higher strain at higher growth temperature, leading to the conclusion that, apart from the formation of misfit dislocations, their ordering represents an important channel for lattice-strain energy relaxation.