Published in

Public Library of Science, PLoS ONE, 6(7), p. e38263, 2012

DOI: 10.1371/journal.pone.0038263

Links

Tools

Export citation

Search in Google Scholar

Reduced Anxiety and Depression-Like Behaviours in the Circadian Period Mutant Mouse Afterhours

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Disruption of the circadian rhythm is a key feature of bipolar disorder. Variation in genes encoding components of the molecular circadian clock has been associated with increased risk of the disorder in clinical populations. Similarly in animal models, disruption of the circadian clock can result in altered mood and anxiety which resemble features of human mania; including hyperactivity, reduced anxiety and reduced depression-like behaviour. One such mutant, after hours (Afh), an ENU-derived mutant with a mutation in a recently identified circadian clock gene Fbxl3, results in a disturbed (long) circadian rhythm of approximately 27 hours.|Methodology: Anxiety, exploratory and depression-like behaviours were evaluated in Afh mice using the open-field, elevated plus maze, light-dark box, holeboard and forced swim test. To further validate findings for human mania, polymorphisms in the human homologue of FBXL3, genotyped by three genome wide case control studies, were tested for association with bipolar disorder.|Principal Findings: Afh mice showed reduced anxiety- and depression-like behaviour in all of the behavioural tests employed, and some evidence of increased locomotor activity in some tests. An analysis of three separate human data sets revealed a gene wide association between variation in FBXL3 and bipolar disorder (P = 0.009).|Conclusions: Our results are consistent with previous studies of mutants with extended circadian periods and suggest that disruption of FBXL3 is associated with mania-like behaviours in both mice and humans.