American Physical Society, Physical Review Letters, 26(95)
DOI: 10.1103/physrevlett.95.266801
Full text: Download
The role of irradiation induced defects and temperature in the conducting properties of single-walled (10,10) carbon nanotubes has been analyzed by means of a first-principles approach. We find that di-vacancies modify strongly the energy dependence of the differential conductance, reducing also the number of contributing channels from two (ideal) to one. A small number of di-vacancies (5-9) brings up strong Anderson localization effects and a seemly universal curve for the resistance as a function of the number of defects. It is also shown that low temperatures, around 15-65 K, are enough to smooth out the fluctuations of the conductance without destroying the exponential dependence of the resistivity as a function of the tube length. ; Comment: 4 pages, 4 figures