Links

Tools

Export citation

Search in Google Scholar

Construction of bicontinuously porous Ni architecture as a deposition scaffold for high performance electrochemical supercapacitors

Journal article published in 2014 by Jinkai Li, Junwu Xiao, Zilong Wang, Zhanhua Wei, Yongcai Qiu, Shihe Yang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A three-dimensional (3D) conductive network as the current collector is critical to enabling high-performance power sources because it not only provides a highly electrolytic accessible area of electroactive materials, but also facilitates electron and electrolyte ion transport. Here, we design a facile method to construct a secondary porous Ni structure (SPNi) on the surface of Ni foam. The SPNi-Ni scaffold can increase the loading of active materials and facilitate transportation of electrons and electrolyte ions. As a demonstration, after depositing Co(OH)2 active material, it can deliver much higher area-specific capacitance of 11.91 F/cm2 at a current density of 10 mA cm−2 and cyclic stability (~16% loss after 1000 cycles) than those on the bare Ni foam under the identical current density (3.57 F cm−2, ~30% loss after 1000 cycles). The results establish that the bicontinuously 3D porous scaffold is a promising candidate for building up high performance energy storage devices.