Springer, Osteoporosis International, 2(25), p. 567-578, 2013
DOI: 10.1007/s00198-013-2441-3
Full text: Download
We demonstrate that glucocorticoids induce an osteoporotic phenotype in regenerating scales of zebrafish. Exposure to prednisolone results in altered mineral content, enhanced matrix breakdown, and an osteoporotic gene-expression profile in osteoblasts and osteoclasts. This highlights that the zebrafish scale provides a powerful tool for preclinical osteoporosis research. INTRODUCTION: This study aims to evaluate whether glucocorticoid (prednisolone) treatment of zebrafish induces an osteoporotic phenotype in regenerating scales. Scales, a readily accessible dermal bone tissue, may provide a tool to study direct osteogenesis and its disturbance by glucocorticoids. METHODS: In adult zebrafish, treated with 25 muM prednisolone phosphate via the water, scales were removed and allowed to regenerate. During regeneration scale morphology and the molar calcium/phosphorus ratio in scales were assessed and osteoblast and osteoclast activities were monitored by time profiling of cell-specific genes; mineralization was visualized by Von Kossa staining, osteoclast activity by tartrate-resistant acid phosphatase histochemistry. RESULTS: Prednisolone (compared to controls) enhances osteoclast activity and matrix resorption and slows down the build up of the calcium/phosphorus molar ratio indicative of altered crystal maturation. Prednisolone treatment further impedes regeneration through a shift in the time profiles of osteoblast and osteoclast genes that commensurates with an osteoporosis-like imbalance in bone formation. CONCLUSIONS: A glucocorticoid-induced osteoporosis phenotype as seen in mammals was induced in regenerating scalar bone of zebrafish treated with prednisolone. An unsurpassed convenience and low cost then make the zebrafish scale a superior model for preclinical studies in osteoporosis research.