Published in

IWA Publishing, Water Science and Technology, 9(70), p. 1496

DOI: 10.2166/wst.2014.402

Links

Tools

Export citation

Search in Google Scholar

Nitrogen transformations and mass balance in an integrated constructed wetland treating domestic wastewater

Journal article published in 2014 by Mawuli Dzakpasu ORCID, Miklas Scholz, Valerie McCarthy, Siobhán Jordan
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nitrogen (N) transformations and removal in integrated constructed wetlands (ICWs) are often high, but the contributions of various pathways, including nitrification/denitrification, assimilation by plants and sediment storage, remain unclear. This study quantified the contributions of different N removal pathways in a typical multi-celled ICW system treating domestic wastewater. Findings showed near complete average total N retention of circa 95% at 102.3 g m−2 yr−1 during the 4-year period of operation. Variations in total N and NH4–N removal rates were associated with effluent flow volume rates and seasons. According to the mass balance estimation, assimilation by plants and sediment/soil storage accounted for approximately 23% and 20%, respectively, of the total N load removal. These were the major N removal route besides microbial transformations. Thus, the combination of plants with high biomass production offer valuable opportunities for improving ICW performance. The retrieval and use of sequestered N in the ICW sediment/soils require coherent management and provide innovative and valuable opportunities.