Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - A European Journal, 50(20), p. 16602-16612, 2014

DOI: 10.1002/chem.201404107

Links

Tools

Export citation

Search in Google Scholar

Synthesis and biological evaluation of a class of mitochondrially-targeted gadolinium(III) agents

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A structure-activity relationship study of a library of novel bifunctional Gd(III) complexes covalently linked to arylphosphonium cations is reported. Such complexes have been designed for potential application in binary cancer therapies such as neutron capture therapy and photon activation therapy. A positive correlation was found between lipophilicity and cytotoxicity of the complexes. Mitochondria uptake was determined by means of inductively coupled plasma mass spectrometry (ICP-MS), and Gd uptake was determined by means of quantification using synchrotron X-ray fluorescence (XRF) imaging. A negative correlation between lipophilicity and tumour selectivity of the Gd(III) complexes was demonstrated. This study highlights the delicate balance required to minimise in vitro cytotoxicity and optimise in vitro tumour selectivity and mitochondrial localisation for this new class of mitochondrially-targeted binary therapy agents. We also report the highest in vitro tumour selectivity for any Gd agent reported to date, with a T/N (tumour/normal cell) ratio of up to 23.5±6.6. ; Daniel E. Morrison, Jade B. Aitken, Martin D. de Jonge, Fatiah Issa, Hugh H. Harris, and Louis M. Rendina