Dissemin is shutting down on January 1st, 2025

Published in

Division IV Engineering Sciences, Bulletin of the Polish Academy of Sciences Technical Sciences, 3(60), p. 407-418, 2012

DOI: 10.2478/v10175-012-0052-3

Links

Tools

Export citation

Search in Google Scholar

ICA-based EEG denoising: a comparative analysis of fifteen methods

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

special issue on Data Mining in Bioengineering ; International audience ; Independent Component Analysis (ICA) plays an important role in biomedical engineering. Indeed, the complexity of processes involved in biomedicine and the lack of reference signals make this blind approach a powerful tool to extract sources of interest. However, in practice, only a few ICA algorithms such as SOBI, (extended) InfoMax and FastICA are used nowadays to process biomedical signals. In this paper we raise the question whether other ICA methods could be better suited in terms of performance and computational complexity. We focus on ElectroEncephaloGraphy (EEG) data denoising, and more particularly on removal of muscle artifacts from interictal epileptiform activity. Assumptions required by ICA are discussed in such a context. Then fifteen ICA algorithms, namely JADE, CoM2, SOBI, SOBIrob, (extended) InfoMax, PICA, two different implementations of FastICA, ERICA, SIMBEC, FOBIUMJAD, TFBSS, ICAR3, FOOBI1 and 4-CANDHAPc are briefly described. Next they are studied in terms of performance and numerical complexity. Quantitative results are obtained on simulated epileptic data generated with a physiologically-plausible model. These results are also illustrated on real epileptic recordings.