Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Innovation and Research in BioMedical engineering, 3(34), p. 214-225

DOI: 10.1016/j.irbm.2013.01.017

Links

Tools

Export citation

Search in Google Scholar

Bayesian denoising framework of phonocardiogram based on a new dynamical model

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, we introduce a model-based Bayesian denoising framework for phonocardiogram (PCG) signals. The denoising framework is founded on a new dynamical model for PCG, which is capable of generating realistic synthetic PCG signals. The introduced dynamical model is based on PCG morphology and is inspired by electrocardiogram (ECG) dynamical model proposed by McSharry et al. and can represent various morphologies of normal PCG signals. The extended Kalman smoother (EKS) is the Bayesian filter that is used in this study. In order to facilitate the adaptation of the denoising framework to each input PCG signal, the parameters are selected automatically from the input signal itself. This approach is evaluated on several PCGs recorded on healthy subjects, while artificial white Gaussian noise is added to each signal, and the SNR and morphology of the outputs of the proposed denoising approach are compared with the outputs of the wavelet denoising (WD) method. The results of the EKS demonstrate better performance than WD over a wide range of PCG SNRs. The new PCG dynamical model can also be employed to develop other model-based processing frameworks such as heart sound segmentation and compression.