Published in

Taylor and Francis Group, Materials Science and Technology, 1(21), p. 27-34

DOI: 10.1179/174328005x14375

Links

Tools

Export citation

Search in Google Scholar

Imaging and strain mapping fibre by fibre in the vicinity of a fatigue crack in a Ti/SiC fibre composite

Journal article published in 2005 by R. Sinclair, M. Preuss ORCID, P. J. Withers ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High resolution X-ray micro-tomography has been combined with high spatial resolution diffraction measurements to map the relationship between damage and elastic strain in individual fibres in the bulk of a metal matrix composite containing a matrix fatigue crack in 3D for the first time. Approximately three plies bridge the transverse matrix fatigue crack. The interfacial shear stress distributions in individual bridging fibres have been derived from the respective axial fibre strain profiles. For each fibre these profiles indicate a step jump in interfacial shear stress at the boundary between sliding and perfect bonding. This sudden decrease is taken to be the result of a sharp drop in the sliding stress due to fretting fatigue. Furthermore, the sliding stress appears to decrease towards the matrix crack. The extent of fibre sliding makes a 'V' shape in the crack wake, extending around 1.5 mm either side of the crack for ply 1. There is some evidence supporting stick-slip and a lower reverse sliding stress (about 30-50 MPa) than the forward one (about 50-60 MPa).