Published in

American Chemical Society, Journal of Chemical and Engineering Data, 12(56), p. 4813-4822, 2011

DOI: 10.1021/je200790q

Links

Tools

Export citation

Search in Google Scholar

Thermophysical characterization of ionic liquids able to dissolve biomass

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Among new potential solvents for lignocellulosic materials, ionic liquids (ILs) are attracting considerable attention. Hence, the knowledge of the thermophysical properties of such fluids is essential for the design of related industrial processes. Therefore, in this work, a set of thermophysical properties, namely, density, viscosity, and refractive index, as a function of temperature, and isobaric thermal expansivity and heat capacities at a constant temperature, were determined for eight ionic liquids with the 1-ethyl-3-methylimidazolium cation combined with the following anions: acetate, methylphosphonate, methanesulfonate, trifluoromethanesulfonate, dicyanamide, thiocyanate, tosylate, and dimethylphosphate. Imidazolium-based ILs were chosen since these are the most studied ionic fluids in biomass dissolution approaches, while a large array of anions was investigated because it was already demonstrated that it is the IL anion that mainly governs the dissolution.