Published in

Carl Hanser Verlag, MP Materials Testing, 2024

DOI: 10.1515/mt-2024-0186

Links

Tools

Export citation

Search in Google Scholar

Artificial neural network infused quasi oppositional learning partial reinforcement algorithm for structural design optimization of vehicle suspension components

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract This paper introduces and investigates an enhanced Partial Reinforcement Optimization Algorithm (E-PROA), a novel evolutionary algorithm inspired by partial reinforcement theory to efficiently solve complex engineering optimization problems. The proposed algorithm combines the Partial Reinforcement Optimization Algorithm (PROA) with a quasi-oppositional learning approach to improve the performance of the pure PROA. The E-PROA was applied to five distinct engineering design components: speed reducer design, step-cone pulley weight optimization, economic optimization of cantilever beams, coupling with bolted rim optimization, and vehicle suspension arm optimization problems. An artificial neural network as a metamodeling approach is used to obtain equations for shape optimization. Comparative analyses with other benchmark algorithms, such as the ship rescue optimization algorithm, mountain gazelle optimizer, and cheetah optimization algorithm, demonstrated the superior performance of E-PROA in terms of convergence rate, solution quality, and computational efficiency. The results indicate that E-PROA holds excellent promise as a technique for addressing complex engineering optimization problems.