Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Meteorology, 2(3), p. 141-160, 2024

DOI: 10.3390/meteorology3020007

Links

Tools

Export citation

Search in Google Scholar

Tropical and Subtropical South American Intraseasonal Variability: A Normal-Mode Approach

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Instead of using the traditional space-time Fourier analysis of filtered specific atmospheric fields, a normal-mode decomposition method was used to analyze South American intraseasonal variability (ISV). Intraseasonal variability was examined separately in the 30–90-day band, 20–30-day band, and 10–20-day band. The most characteristic structure in the intraseasonal time-scale, in the three bands, was the dipole-like convection between the South Atlantic Convergence Zone (SACZ) and the central-east South America (CESA) region. In the 30–90-day band, the convective and circulation patterns were modulated by the large-scale Madden–Julian oscillation (MJO). In the 20–30-day and 10–20-day bands, the convection structures were primarily controlled by extratropical Rossby wave trains. The normal-mode decomposition of reanalysis data based on 30–90-day, 20–30-day, and 10–20-day ISV showed that the tropospheric circulation and CESA–SACZ convective structure observed over South America were dominated by rotational modes (i.e., Rossby waves, mixed Rossby-gravity waves). A considerable portion of the 30–90-day ISV was also associated with the inertio-gravity (IGW) modes (e.g., Kelvin waves), mainly prevailing during the austral rainy season. The proposed decomposition methodology demonstrated that a realistic circulation can be reproduced, giving a powerful tool for diagnosing and studying the dynamics of waves and the interactions between them in terms of their ability to provide causal accounts of the features seen in observations.