Published in

MDPI, Applied Sciences, 11(14), p. 4922, 2024

DOI: 10.3390/app14114922

Links

Tools

Export citation

Search in Google Scholar

Signal Reconstruction of Arbitrarily Lack of Frequency Bands from Seismic Wavefields Based on Deep Learning

Journal article published in 2024 by Xin Li, Fengjiao Zhang ORCID, Liguo Han
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Due to the limitations of seismic exploration instruments and the impact of the high frequencies absorption by the earth layers during subsurface propagation of seismic waves, recorded seismic data usually lack high and low frequency information that is needed to accurately image geological structures. Traditional methods face challenges such as limitations of model assumptions and poor adaptability to complex geological conditions. Therefore, this paper proposes a deep learning method that introduces the attention mechanism and Bi-directional gated recurrent unit (BiGRU) into the Transformer neural network. This approach can simultaneously capture both global and local characteristics of time series data, establish mappings between different frequency bands, and achieve information compensation and frequency extension. The results show that the BiGRU-Extended Transformer network is capable of compensating and extending the synthetic seismic data sets with the limited frequency band. It has certain generalization capabilities and stability and can effectively handle various problems in the data reconstruction process, which is better than traditional methods.