Dissemin is shutting down on January 1st, 2025

Published in

Universidade Estadual de Campinas, Brazilian Journal of Oral Sciences, (23), p. e244006, 2024

DOI: 10.20396/bjos.v23i00.8674006

Links

Tools

Export citation

Search in Google Scholar

Stability of dentin matrix treated with caffeic acid phenethyl ester at different concentrations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Aim: The aim of this study was to investigate the impact of pretreatment with ethanolic solutions of caffeic acid phenethyl ester (CAPE) at varying concentrations on the dentin collagen matrix, specifically focusing on its biomodification potential. This was assessed through evaluations of the modulus of elasticity and changes in mass. Methods: Seventy dentin collagen matrices (demineralized sticks) were prepared to receive treatments with ethanolic solutions of CAPE at concentrations of 0.05%, 0.1%, 0.5%, or 2.5%, or with control treatment solutions (distilled water or ethanol) for one hour. The dentin matrices were evaluated for modulus of elasticity and mass before (baseline), immediately after treatment (immediately), and after storage in Simulated Body Fluid (SBF) for time intervals of 1 and 3 months. Results: Generalized linear models for repeated measures over time indicated no significant differences between groups (p=0.7530) or between different time points (p=0.4780) in terms of the modulus of elasticity. Regarding mass variation, no differences were observed in the time interval between 1 month and the immediate time (p=0.0935). However, at the 3-month mark compared to the immediate time, the 0.1% CAPE group exhibited less mass loss compared to the water group (p=0.0134). Conclusion: This study concludes that various concentrations of CAPE in an ethanolic solution did not affect the modulus of elasticity of dentin, suggesting that CAPE lacks biomodifying potential in this context. However, it was observed that 0.1% CAPE positively influenced the variation in mass over different evaluation time intervals.