Published in

MDPI, Water, 12(16), p. 1699, 2024

DOI: 10.3390/w16121699

Links

Tools

Export citation

Search in Google Scholar

Developing Internal and External Proportional Integral Derivative Water Surface Controller in HEC-RAS

Journal article published in 2024 by Kazem Shahverdi ORCID, Atefe Noorali, Hesam Ghodousi, Ronny Berndtsson ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Controlling the water level in irrigation channels is important for the efficient management of irrigation and water delivery. In this study, the proportional–integral–derivative (PID) controller was implemented in both the HEC-RAS boundary condition, as an internal model, and MATLAB, as an external model. In the latter, the Hydrologic Engineering Center’s (HEC) River Analysis System (HEC-RAS) model was automated for irrigation canals by coding in the MATLAB script. To test the new models, E1R1 (first right bank branch of the first eastern canal in the Dez irrigation network, Khuzestan Province, Iran) irrigation canal data were prepared in HEC-RAS. A flow pattern was provided to simulate the canal water levels. The results showed efficient control of the water level for both models. The maximum and average water depth deviations from the target value were 13% and 4%, respectively, which fall in the good agreement range. The fewer these indicators, the better the performance is. The efficiency and adequacy were close to the ideal value and in the good agreement classes. The equity indicator was 0.013, which is very close to its ideal value of zero, showing efficient water distribution in the tested system. According to the literature for the equity indicator, a range of 0–0.10 is good, a range of 0.11–0.25 is fair, and a range of greater than 0.25 is poor. The results showed that simple and fast implementation is the main advantage of the internal model; however, it is not suitable for implementing complex controllers. Conversely, the external model can be implemented for complicated algorithms without any limitations.