Published in

Wiley, Journal of Phycology: An International Journal of Algal Research, 2024

DOI: 10.1111/jpy.13463

Links

Tools

Export citation

Search in Google Scholar

Sinking rates, orientation, and behavior of pennate diatoms

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPhytoplankton cells are now recognized as dynamic entities rather than as passive and isolated particles because they can actively modulate impacts of selection factors (nutrients, light, turbidity, and mixing) through a wide range of adaptations. Cell shape and/or chain length modulation is one of these processes but has predominantly been studied as an adaptation or an acclimatation to a specific growth limitation (light, nutrients, predation, etc.). In this study we have demonstrated that cell shape and size may have greater roles than previously known in phytoplankton ecology and species adaptation by permitting cell‐to‐cell signaling and more complex ecological processes that result from it. By exploring microscale biophysical interactions that lead to specific cell reorientation processes, we demonstrated that cell geometry not only modulates cell sinking rates but can also provide fast sensor responses to the cells' environment. Although gyrotaxis has been described in detail for motile phytoplankton cells, our findings illustrate that the reorientation process described here can occur even in non‐motile cells within their natural environment. An additional consistent behavior was also recently described for a diatom species (Pseudo‐nitzschia delicatessima), and with this study, we extend this observation to Pseudo‐nitzschia pungens and Pseudo‐nitzschia fraudulenta. Our observations emphasize the generality of this process, which adds a new level of complexity to our understanding of cellular interactions and their network of sensors.