Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Functional Materials, 2024

DOI: 10.1002/adfm.202315925

Links

Tools

Export citation

Search in Google Scholar

Nano‐Scale Interface Engineering of Sulfur Cathode to Enable High‐Performance All‐Solid‐State Li–S Batteries

Journal article published in 2024 by Haoyue Zhong ORCID, Yu Su, Ruqin Ma, Yu Luo, Hongxin Lin, Jiabao Gu, Zhengliang Gong, Yong Yang ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAll‐solid‐state lithium–sulfur batteries (ASSLSBs) are expected to be the next generation of high‐energy battery systems due to their long lifespan and high safety. However, unstable interfaces between elemental sulfur, conductive carbon, and solid electrolytes lead to slow charge transport and mechanical failures, thereby limiting battery performance. Herein, atomic layer deposition‐derived lithium phosphorus oxide is applied to the surface of carbon/sulfur particles to enhance the interfacial stability of the sulfur cathode and improve the electrochemical performance of ASSLSBs. The coating layer can inhibit electrolyte decomposition and improve interfacial stability by blocking electron conduction between carbon and electrolyte. Moreover, it not only serves as an ion‐conducting layer to facilitate Li+ transport but also acts as a stress buffer layer to alleviate contact failure. The assembled ASSLSBs with sulfide electrolyte exhibit an initial specific capacity of 1322 mAh g−1 at 0.2 C and capacity retention of 86.4% after 300 cycles. Furthermore, ASSLSBs maintain a reversible capacity of 645 mAh g−1 at 0.5 A g−1 after 1000 cycles, confirming the long cycling stability of the coated sulfur cathode. Even under high sulfur loading, ASSLSBs achieve high areal capacities of 4.6 mAh cm−2 at 30 °C and 11.7 mAh cm−2 at 60 °C.