Published in

Cambridge University Press, Journal of Fluid Mechanics, (986), 2024

DOI: 10.1017/jfm.2024.263

Links

Tools

Export citation

Search in Google Scholar

Large-scale patterns set the predictability limit of extreme events in Kolmogorov flow

Journal article published in 2024 by Alberto Vela-Martín ORCID, Marc Avila ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Events of extreme intensity in turbulent flows from atmospheric to industrial scales have a strong social and economic impact, and hence there is a need to develop models and indicators which enable their early prediction. Part of the difficulty here stems from the intrinsic sensitivity to initial conditions of turbulent flows. Despite recent progress in understanding and predicting extreme events, the question of how far in advance they can be ideally predicted (without model error and subject only to uncertainty in the initial conditions) remains open. Here we study the predictability limit of extreme dissipation bursts in the two-dimensional Kolmogorov flow by applying information-theoretic measures to massive statistical ensembles with more than $10^7$ direct numerical simulations. We find that extreme events with similar intensity and structure can exhibit disparate predictability due to different causal origins. Specifically, we show that highly predictable extreme events evolve from distinct large-scale circulation patterns. We thus suggest that understanding all the possible routes to the formation of extreme events is necessary to assess their predictability.