Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-40938-y

Links

Tools

Export citation

Search in Google Scholar

Non-volatile optoelectronic memory based on a photosensitive dielectric

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractRecently, the optoelectronic memory is capturing growing attention due to its integrated function of sense and memory as well as multilevel storage ability. Although tens of states have been reported in literature, there are still three obvious deficiencies in most of the optoelectronic memories: large programming voltage (>20 V), high optical power density (>1 mW cm−2), and poor compatibility originating from the over-reliance on channel materials. Here, we firstly propose an optoelectronic memory based on a new photosensitive dielectric (PSD) architecture. Data writing and erasing are realized by using an optical pulse to switch on the PSD. The unique design enables the memory to work with a programming voltage and optical power density as low as 4 V and 160 µW cm−2, respectively. Meanwhile, this device may be extended to different kinds of transistors for specific applications. Our discovery offers a brand-new direction for non-volatile optoelectronic memories with low energy consumption.