Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Animals, 7(14), p. 1031, 2024

DOI: 10.3390/ani14071031

Links

Tools

Export citation

Search in Google Scholar

Exploring the Importance of Environmental Complexity for Newly Hatched Zebrafish

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The effects of an early impoverished social or physical environment on vertebrate neural development and cognition has been known for decades. While existing studies have focused on the long-term effects, measuring adult cognitive phenotypes, studies on the effects of environmental complexity on the early stages of development are lacking. Zebrafish (Danio rerio) hatchlings are assumed to have minimal interaction with their environment and are routinely reared in small, bare containers. To investigate the effects of being raised under such conditions on development of behaviour and cognition, hatchlings housed for 10 days in either an enriched or a standard environment underwent two cognitive tasks. The results were mixed. Subjects of the two treatments did not differ in performance when required to discriminate two areas. Conversely, we found a significant effect in a number discrimination task, with subjects from impoverished condition performing significantly worse. In both experiments, larvae reared in impoverished environment showed a reduced locomotor activity. Given the effects that enrichment appears to exert on larvae, a third experiment explored whether hatchlings exhibit a spontaneous preference for more complex environments. When offered a choice between a bare setting and one with objects of different shapes and colors, larvae spent over 70% of time in the enriched sector. Deepening these effects of an early impoverished environment on cognitive development is crucial for the welfare of captive zebrafish populations and for enhancing the quality and reliability of studies on larval zebrafish.