Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Diagnostics, 14(13), p. 2379, 2023

DOI: 10.3390/diagnostics13142379

Links

Tools

Export citation

Search in Google Scholar

Histopathological Images Analysis and Predictive Modeling Implemented in Digital Pathology—Current Affairs and Perspectives

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In modern clinical practice, digital pathology has an essential role, being a technological necessity for the activity in the pathological anatomy laboratories. The development of information technology has majorly facilitated the management of digital images and their sharing for clinical use; the methods to analyze digital histopathological images, based on artificial intelligence techniques and specific models, quantify the required information with significantly higher consistency and precision compared to that provided by optical microscopy. In parallel, the unprecedented advances in machine learning facilitate, through the synergy of artificial intelligence and digital pathology, the possibility of diagnosis based on image analysis, previously limited only to certain specialties. Therefore, the integration of digital images into the study of pathology, combined with advanced algorithms and computer-assisted diagnostic techniques, extends the boundaries of the pathologist’s vision beyond the microscopic image and allows the specialist to use and integrate his knowledge and experience adequately. We conducted a search in PubMed on the topic of digital pathology and its applications, to quantify the current state of knowledge. We found that computer-aided image analysis has a superior potential to identify, extract and quantify features in more detail compared to the human pathologist’s evaluating possibilities; it performs tasks that exceed its manual capacity, and can produce new diagnostic algorithms and prediction models applicable in translational research that are able to identify new characteristics of diseases based on changes at the cellular and molecular level.