Dissemin is shutting down on January 1st, 2025

Published in

IOS Press, Intelligent Data Analysis, (27), p. 83-94, 2023

DOI: 10.3233/ida-237435

Links

Tools

Export citation

Search in Google Scholar

Digital image processing for evaluating the impact of designated nanoparticles in biomedical applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanomaterials are finding increasingly diverse medical uses as technology advances. Researchers are constantly being introduced to new and improved methods, and these applications see widespread use for both diagnostic and therapeutic purposes. Early disease detection, efficient drug delivery, cosmetics and health care products, biosensors, miniaturisation techniques, surface improvement in implantable biomaterials, improved nanofibers in medical textiles, etc. are all examples of how biomedical nanotechnology has made a difference in the medical field. The nanoparticles are introduced deliberately for therapeutic purposes or accidentally from the environment; they will eventually reach and penetrate the human body. The exposed nanoparticles interact with human blood, which carries them to various tissues. An essential aspect of blood rheology in the microcirculation is its malleability. As a result, nanomaterial may cause structural abnormalities in erythrocytes. Echinocyte development is a typical example of an induced morphological alteration. The length of time it takes for these side effects to disappear after taking a nano medication also matters. Haemolyses could result from the dangerous concentration. In this experiment, human blood is exposed to varying concentrations of chosen nanomaterial with potential medical applications. The morphological modifications induced were studied by looking at images of erythrocyte cells. That’s a picture of a cell taken using a digital optical microscope, by the way. We used MATLAB, an image-analysis programme, to study the morphometric features. Human lymphocyte cells were used in the cytotoxic analysis.