Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astronomical Journal, 2(166), p. 63, 2023

DOI: 10.3847/1538-3881/ace2bb

Links

Tools

Export citation

Search in Google Scholar

Mind the Gap. I. Hα Activity of M Dwarfs Near the Partially/Fully Convective Boundary and a New Hα Emission Deficiency Zone on the Main Sequence

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Since identifying the gap in the H-R Diagram (HRD) marking the transition between partially and fully-convective interiors, a unique type of slowly pulsating M dwarf has been proposed. These unstable M dwarfs provide new laboratories in which to understand how changing interior structures can produce potentially observable activity at the surface. In this work, we report the results of the largest high-resolution spectroscopic Hα emission survey to date spanning this transition region, including 480 M dwarfs observed using the CHIRON spectrograph at CTIO/SMARTS 1.5 m. We find that M dwarfs with Hα in emission are almost entirely found 0–0.5 mag above the top edge of the gap in the HRD, whereas effectively no stars in and below the gap show emission. Thus, the top edge of the gap marks a relatively sharp activity transition, and there is no anomalous Hα activity for stars in the gap. We also identify a new region at 10.3 < M G < 10.8 on the main sequence where fewer M dwarfs exhibit Hα emission compared to M dwarfs above and below this magnitude range. Careful evaluation of the results in the literature indicates that (1) rotation and Hα activity distributions on the main-sequence are closely related, and (2) fewer stars in this absolute magnitude range rotate in less than ∼13 days than populations surrounding this region. This result suggests that the most massive fully-convective stars lose their angular momentum faster than both partially convective stars and less massive fully-convective stars.