Dissemin is shutting down on January 1st, 2025

Published in

Optica, Applied Optics, 14(63), p. D14, 2024

DOI: 10.1364/ao.515963

Links

Tools

Export citation

Search in Google Scholar

Photonic comb: a stabilized single-mode fiber etalon for wavelength calibration

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a low-cost alternative to more complex laser metrology systems that uses a single-mode fiber Fabry–Perot etalon to generate an emission spectrum of evenly spaced lines with similar intensities, ideal for calibrating spectrographs (both in terms of wavelength and image quality). The system uses the hyperfine transition lines of 87Rb near 780.24 nm as an absolute reference. By controlling the cavity dimensions by small changes in temperature, we can tune and thus stabilize the transmission spectrum. A 20 Hz PID loop controls the etalon temperature and locks it to the 87Rb transitions. Through this method, we achieve a centroid error/precision of <1m/s (2.6 fm or 1.3 MHz) for 1 s integrations and 1 cm/s (0.026 fm or 13 kHz) for 30 min integrations of the reference line. We also show that a solution can be found to mathematically describe the spectrum. With the correct calibration and environmental controls in place, we show that this setup has the potential to be competitive with the best existing methods based on expensive and cumbersome laser combs.