Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Materials, 13(36), 2023

DOI: 10.1002/adma.202310020

Links

Tools

Export citation

Search in Google Scholar

Continuous Melt Spinning of Adaptable Covalently Cross‐Linked Self‐Healing Ionogel Fibers for Multi‐Functional Ionotronics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractStretchable conductive fibers play key roles in electronic textiles, which have substantial improvements in terms of flexibility, breathability, and comfort. Compared to most existing electron‐conductive fibers, ion‐conductive fibers are usually soft, stretchable, and transparent, leading to increasing attention. However, the integration of desirable functions including high transparency, stretchability, conductivity, solvent resistance, self‐healing ability, processability, and recyclability remains a challenge to be addressed. Herein, a new molecular strategy based on dynamic covalent cross‐linking networks is developed to enable continuous melt spinning of the ionogel fiber with the aforementioned properties. As a proof of concept, adaptable covalently cross‐linked ionogel fibers based on dimethylglyoximeurethane (DOU) groups (DOU‐IG fiber) are prepared. The resultant DOU‐IG fiber exhibited high transparency (>93%), tensile strength (0.76 MPa), stretchability (784%), and solvent resistance. Owing to the dynamic of DOU groups, the DOU‐IG fiber shows high healing performance using near‐infrared light. Taking advantage of DOU‐IG fibers, multifunctional ionotronics with the integration of several desirable functionalities including sensor, triboelectric nanogenerator, and electroluminescent display are fabricated and used for motion monitoring, energy harvesting, and human–machine interaction. It is believed that these DOU‐IG fibers are promising for fabricating the next generation of electronic textiles and other wearable electronics.