Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Advances, 12(10), 2024

DOI: 10.1126/sciadv.adk5177

Links

Tools

Export citation

Search in Google Scholar

Bone-inspired stress-gaining elastomer enabled by dynamic molecular locking

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The limited capacity of typical materials to resist stress loading, which affects their mechanical performance, is one of the most formidable challenges in materials science. Here, we propose a bone-inspired stress-gaining concept of converting typically destructive stress into a favorable factor to substantially enhance the mechanical properties of elastomers. The concept was realized by a molecular design of dynamic poly(oxime-urethanes) network with mesophase domains. During external loading, the mesophase domains in the condensed state were aligned into more ordered domains, and the dynamic oxime-urethane bonds served as the dynamic molecular locks disassociating and reorganizing to facilitate and fix the mesophase domains. Consequently, the tensile modulus and strength were enhanced by 1744 and 49.3 times after four cycles of mechanical training, respectively. This study creates a molecular concept with stress-gaining properties induced by repeated mechanical stress loading and will inspire a series of innovative materials for diverse applications.