Published in

American Association for the Advancement of Science, Science Advances, 17(9), 2023

DOI: 10.1126/sciadv.adg0654

Links

Tools

Export citation

Search in Google Scholar

Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Immune-responsive gene 1 (IRG1) encodes aconitate decarboxylase (ACOD1) that catalyzes the production of itaconic acids (ITAs). The anti-inflammatory function of IRG1/ITA has been established in multiple pathogen models, but very little is known in cancer. Here, we show that IRG1 is expressed in tumor-associated macrophages (TAMs) in both human and mouse tumors. Mechanistically, tumor cells induce Irg1 expression in macrophages by activating NF-κB pathway, and ITA produced by ACOD1 inhibits TET DNA dioxygenases to dampen the expression of inflammatory genes and the infiltration of CD8 + T cells into tumor sites. Deletion of Irg1 in mice suppresses the growth of multiple tumor types and enhances the efficacy of anti–PD-(L)1 immunotherapy. Our study provides a proof of concept that ACOD1 is a potential target for immune-oncology drugs and IRG1 -deficient macrophages represent a potent cell therapy strategy for cancer treatment even in pancreatic tumors that are resistant to T cell–based immunotherapy.