Published in

Wiley, Ecology, 8(104), 2023

DOI: 10.1002/ecy.4115

Links

Tools

Export citation

Search in Google Scholar

Understanding the state‐dependent impact of species correlated responses on community sensitivity to perturbations

Journal article published in 2023 by Lucas P. Medeiros ORCID, Serguei Saavedra ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractUnderstanding how communities respond to perturbations requires us to consider not only changes in the abundance of individual species but also correlated changes that can emerge through interspecific effects. However, our knowledge of this phenomenon is mostly constrained to situations where interspecific effects are fixed. Here, we introduce a framework to disentangle the impact of species correlated responses on community sensitivity to perturbations when interspecific effects change over time due to cyclic or chaotic population dynamics. We partition the volume expansion rate of perturbed abundances (community sensitivity) into contributions of individual species and of species correlated responses by converting the time‐varying Jacobian matrix containing interspecific effects into a time‐varying covariance matrix. Using population dynamics models, we demonstrate that species correlated responses change considerably across time and continuously alternate between reducing and having no impact on community sensitivity. Importantly, these alternating impacts depend on the abundance of particular species and can be detected even from noisy time series. We showcase our framework using two experimental predator–prey time series and find that the impact of species correlated responses is modulated by prey abundance—as theoretically expected. Our results provide new insights into how and when species interactions can dampen community sensitivity when abundances fluctuate over time.