Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Helvetica Chimica Acta, 11(106), 2023

DOI: 10.1002/hlca.202300138

Links

Tools

Export citation

Search in Google Scholar

Synthesis and Evaluation of Novel 5‐O‐(4‐C‐Aminoalkyl‐β‐D‐ribofuranosyl) Apramycin Derivatives for the Inhibition of Gram‐Negative Pathogens Carrying the Aminoglycoside Phosphotransferase(3′)‐Ia Resistance Determinant

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe report the synthesis and evaluation of two new apramycin 5‐O‐β‐d‐ribofuranosides, or apralogs, carrying aminoalkyl branches at the ribofuranose 4‐position. This novel modification conveys excellent activity for the inhibition of protein synthesis by wild‐type bacterial ribosomes and correspondingly high antibacterial activity against several Gram‐negative pathogens. Notably, these new modifications overcome the reduction of antibacterial activity in other 2‐deoxystreptamine‐type aminoglycosides carrying a 5‐O‐ribofuranosyl moiety when challenged by the presence of an aminoglycoside phosphotransferase enzyme capable of acting on the ribose 5‐position.