Published in

Cambridge University Press, Publications of the Astronomical Society of Australia, (41), 2023

DOI: 10.1017/pasa.2023.64

Links

Tools

Export citation

Search in Google Scholar

RadioGalaxyNET: Dataset and novel computer vision algorithms for the detection of extended radio galaxies and infrared hosts

Journal article published in 2023 by Nikhel Gupta ORCID, Zeeshan Hayder, Ray P. Norris ORCID, Minh Huynh ORCID, Lars Petersson
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Creating radio galaxy catalogues from next-generation deep surveys requires automated identification of associated components of extended sources and their corresponding infrared hosts. In this paper, we introduce RadioGalaxyNET, a multimodal dataset, and a suite of novel computer vision algorithms designed to automate the detection and localization of multi-component extended radio galaxies and their corresponding infrared hosts. The dataset comprises 4 155 instances of galaxies in 2 800 images with both radio and infrared channels. Each instance provides information about the extended radio galaxy class, its corresponding bounding box encompassing all components, the pixel-level segmentation mask, and the keypoint position of its corresponding infrared host galaxy. RadioGalaxyNET is the first dataset to include images from the highly sensitive Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope, corresponding infrared images, and instance-level annotations for galaxy detection. We benchmark several object detection algorithms on the dataset and propose a novel multimodal approach to simultaneously detect radio galaxies and the positions of infrared hosts.