Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 25(123), 2023

DOI: 10.1063/5.0176312

Links

Tools

Export citation

Search in Google Scholar

Kibble–Zurek scaling of nonequilibrium phase transition in barium titanate

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Far-from-equilibrium phase transition dynamics is one of the grand challenges in modern materials science. A theoretical landmark is the Kibble–Zurek (KZ) scaling to describe the relationship between the temperature quenching rate and the resulting defect density in the vicinity of symmetry-breaking phase transformations. Despite the confirmation of the KZ scaling in ferroic perovskite materials and macroscopic simulations, its atomistic mechanisms remain elusive. Here, we demonstrate the KZ scaling using all-atom molecular dynamics simulations for a prototypical ferroelectric perovskite, barium titanate, with the scaling exponent corresponding to the theoretical prediction for rapid quenching. Simulated diffuse neutron scattering data are presented to guide future experiments.