Published in

Proceedings of the ACM on Management of Data, 2(1), p. 1-26, 2023

DOI: 10.1145/3589330

Links

Tools

Export citation

Search in Google Scholar

Efficient Query Re-optimization with Judicious Subquery Selections

Journal article published in 2023 by Junyi Zhao ORCID, Huanchen Zhang ORCID, Yihan Gao ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Query re-optimization is an adaptive query processing technique that re-invokes the optimizer at certain points in query execution. The goal is to dynamically correct the cardinality estimation errors using the statistics collected at runtime to adjust the query plan to improve the overall performance. We identify a key weakness in existing re-optimization algorithms: their subquery division and re-optimization trigger strategies rely heavily on the optimizer's initial plan, which can be far away from optimal. We, therefore, propose QuerySplit, a novel re-optimization algorithm that skips the potentially misleading global plan and instead generates subqueries directly from the logical plan as the basic re-optimization units. By developing a cost function that prioritizes the execution of less "damaging" subqueries, QuerySplit successfully postpones (sometimes avoids) the execution of complex large joins to maximize their probability of having smaller input sizes. We implemented QuerySplit in PostgreSQL and compared our solution against four state-of-the-art re-optimization algorithms using the Join Order Benchmark. Our experiments show that QuerySplit reduces the benchmark execution time by 35% compared to the second-best alternative. The performance gap between QuerySplit and an optimal optimizer is within 4%.