American Geophysical Union, Geophysical Research Letters, 24(50), 2023
DOI: 10.1029/2023gl106536
Full text: Unavailable
AbstractWaves critically modulate the air‐sea fluxes, and upper‐ocean thermodynamics in a Tropical Cyclone (TC) system. This study improves the modeling of TC intensification by incorporating non‐breaking wave‐induced turbulence and sea spray from breaking waves into an atmosphere‐ocean‐wave coupled model. Notably, wind forecast error decreased by around 10% prior to TCs' peak intensity. The positive feedback of sea spray along with compensatory negative feedback from non‐breaking waves, overall enhanced TCs' intensity. These breaking and non‐breaking wave‐coupled processes consistently cool sea surface temperature, resulting in improvement of the modeled SST. Observed improvements in full‐year TC cases ranging from Categories I to IV in this study suggest that an accurate characterization of ocean wave‐coupled processes is crucial for improving TCs' intensity forecasts and advancing our understanding of severe weather events in both, the atmosphere and ocean.