Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(527), p. 7203-7216, 2023

DOI: 10.1093/mnras/stad3066

Links

Tools

Export citation

Search in Google Scholar

Sweeping secular resonances and giant planet inclinations in transition discs

Journal article published in 2023 by J. J. Zanazzi ORCID, E. Chiang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The orbits of some warm Jupiters are highly inclined (20°–50°) to those of their exterior companions. Comparable misalignments are inferred between the outer and inner portions of some transition discs. These large inclinations may originate from planet–planet and planet–disc secular resonances that sweep across interplanetary space as parent discs disperse. The maximum factor by which a seed mutual inclination can be amplified is of the order of the square root of the angular momentum ratio of the resonant pair. We identify those giant planet systems (e.g. Kepler-448 and Kepler-693) that may have crossed a secular resonance, and estimate the required planet masses and semimajor axes in transition discs needed to warp their innermost portions (e.g. in CQ Tau). Passage through an inclination secular resonance could also explain the hypothesized large mutual inclinations in apsidally-orthogonal warm Jupiter systems (e.g. HD 147018).